Stationary phase in yeast.

نویسنده

  • Paul K Herman
چکیده

Eukaryotic cell proliferation is controlled by specific growth factors and the availability of essential nutrients. If either of these signals is lacking, cells may enter into a specialized nondividing resting state, known as stationary phase or G(0). The entry into such resting states is typically accompanied by a dramatic decrease in the overall growth rate and an increased resistance to a variety of environmental stresses. Since most cells spend most of their life in these quiescent states, it is important that we develop a full understanding of the biology of the stationary phase/G(0) cell. This knowledge would provide important insights into the control of two of the most fundamental aspects of eukaryotic cell biology: cell proliferation and long-term cell survival. This review will discuss some recent advances in our understanding of the stationary phase of growth in the budding yeast, Saccharomyces cerevisiae.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Whey Permeate and Yeast Extract on Metabolic Activity of Bifidobacterium Animalis Subsp. Lactis Bb 12

In fermented products containing Bifidobacteria, factors such as organic acid concentration and b-galactosidase activity are important in the development of flavor and texture of final products. Both the process conditions and medium components have significant effects on fluctuation of such factors. The effects of whey permeate powder and yeast extract concentrations, as nitrogen sources was i...

متن کامل

Stationary phase in the yeast Saccharomyces cerevisiae.

Growth and proliferation of microorganisms such as the yeast Saccharomyces cerevisiae are controlled in part by the availability of nutrients. When proliferating yeast cells exhaust available nutrients, they enter a stationary phase characterized by cell cycle arrest and specific physiological, biochemical, and morphological changes. These changes include thickening of the cell wall, accumulati...

متن کامل

Human Bcl-2 Reverses Survival Defects in Yeast Lacking Superoxide Dismutase and Delays Death of Wild-Type Yeast

We expressed the human anti-apoptotic protein, Bcl-2, in Saccharomyces cerevisiae to investigate its effects on antioxidant protection and stationary phase survival. Yeast lacking copper-zinc superoxide dismutase (sod1Delta) show a profound defect in entry into and survival during stationary phase even under conditions optimal for survival of wild-type strains (incubation in water after station...

متن کامل

The Mutation of the rpoS Gene, the Central Regulator of Stationary Phase, Affects the Cell Division in Flexibacter chinensis

A one kb portion of the rpoS gene from Flexibacter chinensis was isolated by PCR, sequenced and compared to the rpoS gene of a variety of other organisms. The gene was found to be 98% similar to previously sequenced genes. Mutation of the rpoS gene with tri-parental mating produced strain JR101 and the growth rate of the mutant was compared with that of the wild-type. The mutant grew slower, an...

متن کامل

A zinc finger protein required for stationary phase viability in fission yeast.

Yeast cells exit the cell cycle and enter a metabolically inert stationary phase when starved for nutrients essential for normal proliferation. We have cloned a novel gene named rsv1+ (required for stationary phase viability) that is essential for fission yeast cell viability in a stationary phase induced by glucose starvation. rsv1+ encodes a 47 kDa protein with two zinc finger motifs that are...

متن کامل

Multiple Pathways Regulate Minisatellite Stability During Stationary Phase in Yeast

Alterations in minisatellite DNA repeat tracts in humans have been correlated with a number of serious disorders, including cancer. Despite their importance for human health, the genetic factors that influence minisatellite stability are not well understood. Previously, we identified mutations in the Saccharomyces cerevisiae zinc homeostasis genes ZRT1 and ZAP1 that significantly increase the f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current opinion in microbiology

دوره 5 6  شماره 

صفحات  -

تاریخ انتشار 2002